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Problem	  Statement	  

•  What	  problem	  are	  you	  trying	  to	  solve?	  
•  Why	  does	  it	  maPer?	  
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Enhanced	  Monitoring	  &	  
Measuring	  Architecture	  

Enhanced	  System	  State	  
Awareness	  

Cascading	  Failure	  in	  Power	  Grids	  is	  a	  
severe	  security	  threat.	  However,	  an	  
accurate	  model	  and	  metrics	  to	  
evaluate	  the	  risk	  of	  failure	  and	  the	  
Hme	  margin	  to	  perform	  correcHve	  
acHon	  are	  missing.	  
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Background	  

•  The	  electric	  power	  grid	  inter-‐connecHvity	  	  
–  enables	  long-‐distance	  transmission	  of	  power	  for	  more	  efficient	  system	  operaHon.	  	  
–  also	  allows	  the	  propagaHon	  of	  disturbances,	  even	  escalate	  in	  catastrophic	  

blackouts.	  	  

•  Many	  research	  efforts	  on	  the	  vulnerability	  of	  power	  grids	  
–  StaHc	  failure	  models	  

•  focus	  on	  topology	  vulnerability,	  such	  as	  network	  connecHvity	  
•  do	  not	  describe	  the	  evolving	  process	  of	  cascading	  failures	  
•  works	  by	  Rosas-‐Casals,	  Valverde	  ,	  etc.	  	  
•  some	  use	  realisHc	  power	  grid	  networks;	  some	  use	  inappropriate	  network	  
topologies.	  

–  Dynamic	  overload	  failure	  models	  
•  3	  components:	  triggering	  events,	  flow	  re-‐dispatch,	  addiHonal	  line	  trips	  
•  Graphic	  theory	  approaches	  (MoPer	  :	  graph	  network)	  
•  Models	  based	  on	  realisHc	  power	  flows	  (Dobson:	  linear	  OPF)	  
•  StochasHc	  models	  (Dobson:	  branching	  process,	  Hines:	  criHcal	  slowing	  down)	  
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On	  the	  Graphic	  Approaches	  

•  CriHque	  of	  Graph	  TheoreHc	  Models	  
–  more	  suitable	  for	  communicaHon	  or	  traffic	  networks	  	  
–  	  the	  informaHon	  packets	  and	  vehicles	  can	  freely	  switch	  their	  route	  
–  the	  flows	  preferenHally	  choose	  shorter	  paths	  
–  The	  nodes	  in	  a	  network	  can	  easily	  switch	  its	  role	  as	  a	  sender	  or	  receiver	  

•  The	  flows	  in	  a	  power	  grid	  network	  
–  dominated	  by	  Kirchhoff’s	  Voltage/Current	  laws	  and	  Ohm’s	  law	  

–  the	  conservaHon	  of	  flows	  in	  a	  graph	  =>	  equivalent	  to	  KCL	  	  
–  	  KVL	  and	  Ohm’s	  law	  are	  unique	  for	  power	  gird	  flows	  
–  the	  nodes	  in	  a	  grid	  divided	  into	  3	  classes:	  generaHon/load/interconnecHon,	  

switching	  roles	  are	  rare.	  
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Visualized	  Examples	  
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(a) the flattened grid
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(b) the original flow distribution
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(c) flow redistribution after line trips
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(d) changes in the flow magnitude

Fig. 1: Flow Redistribution in a Torus Grid Network

is more an accident than a result of a law if they tend to carry
a larger share of load flow in the network. This is attested by
the experiments we perform to study the flow redistribution on
the IEEE-57 System,whose rewiring structure can be depicted
by a Kirk’s plot as in Fig. 2. The color intensity shows the
original flow distribution in the network in Fig. 2(a). Fig.
2(b) shows how the flow distribution changes when the line
impedance of line 1-15 is increased by a factor of 10. Note
the line impedance change does not alter the node degrees or
line betweenness in the network. However, some large flow
changes can be observed on a number of lines. This verifies
that the line impedances, besides the network topology, also
play an important role in determining the flow distribution. The
flow magnitude changes after tripping a rewire link (line 22-
38) have been displayed in 2(d). The flow magnitude changes
after tripping a local link (line 5-6) are exemplified in Fig.
2(c). It can be seen that tripping a rewire link may result in
large flow redistributions on other rewire links and some links
in the connected clusters. On the other hand, tripping a local
cluster link usually may not cause large flow redistribution
outside the local cluster. Again some lines experience an
increase and others a decrease in flow. But neither the original
flow dispatch in a power grid, nor the flow re-distribution
after contingencies, concentrate on shortest paths between
generators and loads. They are not proportional to the node
degree or betweenness. More detailed discussions on power
grid flow distribution will been presented in Section IV.

III. CRITIQUE OF OPTIMAL POWER DISPATCH MODELS

While this class of models is consistent with the physical
reality of electrical power grids flows, the optimization power
flow model, as shown in [12], may not be an appropriate
approach to simulate the flow re-distribution process during
the cascading failures. Although the cascading process in a
power grid starts from isolated random contingencies, the root
reason for the spreading of failures may lie in some intrinsic
weakness of the network or some hidden failures, which go un-
detected and therefore do not lead to timely corrective action.

(a) the original flow distribution (b) increasing the impedance of line
1-15 (rewire link)

(c) tripping line 5-6 (local link) (d) tripping line 22-38 (rewire link)

Fig. 2: Flow Redistribution in the IEEE-57 System

During the escalation of cascading failures, hundreds of lines
are switched off in less than an hour period, and usually there
is not enough time for planning any optimized generation re-
dispatch or load-shedding. Only local transient controls are
engaged, like the Generation Governor Control (GGC). Also,
including the OPF in the simulation model is somewhat self-
contradictory: on one hand, it makes a necessary adjustment
in generation and performs load shedding in order to avoid
line overloads after line outages; on the other , the job is
left somewhat unfinished, since the OPF used depresses only
partially the flows below the line capacity limits and leaves
some chance for additional overloads and line trips, so as to
model the following stages. Another common drawback in
the prior art is the inability to capture the evolution process of
cascading failures with regard to time since they only describe
the cascading process in network state stages.

Therefore in this paper we propose a stochastic Markov
model for the transition of the power grid state, which in-
corporates uncertainties in the system load settings and in the
corresponding generation and line flows. The flow distribution
is derived from the network equations, as a function of the
generation and load distribution (i.e. the operating point). This
model identifies critical paths followed by cascading failures,
allowing to explore the future beyond single failures.

IV. SYSTEM MODEL AND FLOW DISTRIBUTION

The DC power flow approximation is a standard approach
widely used in optimizing flow dispatch and for assessing
line overloads (see [19] for more details). Consider a power
grid transmission network with n nodes interconnected by m

transmission lines, the network flow equation can be written
as follows:

P = B

0
✓, (1)
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(a) the flattened grid (b) the original flow distribution

(c) flow redistribution after line trips (d) changes in the flow magnitude

Fig. 1: Flow Redistribution in a Torus Grid Network

is more an accident than a result of a law if they tend to carry
a larger share of load flow in the network. This is attested by
the experiments we perform to study the flow redistribution on
the IEEE-57 System,whose rewiring structure can be depicted
by a Kirk’s plot as in Fig. 2. The color intensity shows the
original flow distribution in the network in Fig. 2(a). Fig.
2(b) shows how the flow distribution changes when the line
impedance of line 1-15 is increased by a factor of 10. Note
the line impedance change does not alter the node degrees or
line betweenness in the network. However, some large flow
changes can be observed on a number of lines. This verifies
that the line impedances, besides the network topology, also
play an important role in determining the flow distribution. The
flow magnitude changes after tripping a rewire link (line 22-
38) have been displayed in 2(d). The flow magnitude changes
after tripping a local link (line 5-6) are exemplified in Fig.
2(c). It can be seen that tripping a rewire link may result in
large flow redistributions on other rewire links and some links
in the connected clusters. On the other hand, tripping a local
cluster link usually may not cause large flow redistribution
outside the local cluster. Again some lines experience an
increase and others a decrease in flow. But neither the original
flow dispatch in a power grid, nor the flow re-distribution
after contingencies, concentrate on shortest paths between
generators and loads. They are not proportional to the node
degree or betweenness. More detailed discussions on power
grid flow distribution will been presented in Section IV.

III. CRITIQUE OF OPTIMAL POWER DISPATCH MODELS

While this class of models is consistent with the physical
reality of electrical power grids flows, the optimization power
flow model, as shown in [12], may not be an appropriate
approach to simulate the flow re-distribution process during
the cascading failures. Although the cascading process in a
power grid starts from isolated random contingencies, the root
reason for the spreading of failures may lie in some intrinsic
weakness of the network or some hidden failures, which go un-
detected and therefore do not lead to timely corrective action.

Ft – resulting flows: small hole case• Trip line 1-15 which carries the largest flow in the network.

• Causes large flow increases in the nearby rewire links and some local links. max F_incr = 0.9 p.u
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(a) the original flow distribution
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(b) increasing the impedance of line
1-15 (rewire link)

Ft – resulting flows: small hole case• Trip line 5-6 which is a local link and carries small-amount flow in the network.

• Only causes small flow increases less than .01.
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(c) tripping line 5-6 (local link)
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(d) tripping line 22-38 (rewire link)

Fig. 2: Flow Redistribution in the IEEE-57 System

During the escalation of cascading failures, hundreds of lines
are switched off in less than an hour period, and usually there
is not enough time for planning any optimized generation re-
dispatch or load-shedding. Only local transient controls are
engaged, like the Generation Governor Control (GGC). Also,
including the OPF in the simulation model is somewhat self-
contradictory: on one hand, it makes a necessary adjustment
in generation and performs load shedding in order to avoid
line overloads after line outages; on the other , the job is
left somewhat unfinished, since the OPF used depresses only
partially the flows below the line capacity limits and leaves
some chance for additional overloads and line trips, so as to
model the following stages. Another common drawback in
the prior art is the inability to capture the evolution process of
cascading failures with regard to time since they only describe
the cascading process in network state stages.

Therefore in this paper we propose a stochastic Markov
model for the transition of the power grid state, which in-
corporates uncertainties in the system load settings and in the
corresponding generation and line flows. The flow distribution
is derived from the network equations, as a function of the
generation and load distribution (i.e. the operating point). This
model identifies critical paths followed by cascading failures,
allowing to explore the future beyond single failures.

IV. SYSTEM MODEL AND FLOW DISTRIBUTION

The DC power flow approximation is a standard approach
widely used in optimizing flow dispatch and for assessing
line overloads (see [19] for more details). Consider a power
grid transmission network with n nodes interconnected by m

transmission lines, the network flow equation can be written
as follows:

P = B

0
✓, (1)
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The	  LOPF-‐models	  
•  The	  models	  based	  on	  Linear	  OpHmizaHon:	  	  

–  DC	  power	  flow	  –	  consistent	  with	  power	  grid	  network.	  	  
–  determined	  opHmizaHon	  (LOPF)	  –	  inappropriate	  model	  for	  flow	  re-‐distribuHon	  

ajer	  failures	  
•  the	  escalaHon	  of	  cascading	  failures:	  hundreds	  of	  lines	  tripped	  in	  a	  short	  period	  
•  there	  is	  usually	  not	  enough	  Hme	  for	  planning	  any	  opHmized	  generaHon	  re-‐	  
dispatch	  or	  load-‐shedding	  

•  self-‐	  contradictory	  sekngs	  in	  the	  model:	  	  	  

 	  
assuming	  necessary	  
adjustment	  in	  generaHon	  
and/or	  load	  shedding	  in	  
order	  to	  avoid	  line	  
overloads	  ajer	  line	  
outages	  

the	  task	  in	  fact	  is	  only	  
parHally	  finished:	  the	  line	  
flows	  depressed	  slightly	  
below	  the	  overload	  threshold	  
and	  some	  chances	  lej	  for	  
addiHonal	  overloads	  and	  line	  
trips,	  so	  as	  to	  model	  the	  
following	  stages.	  
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Branching	  Process,	  etc.	  
•  A	  few	  authors	  have	  considered	  stochasHc	  modeling.	  	  

–  Dobson,	  Carreras	  and	  Newman	  (2005)	  [16]	  analyzed	  the	  line	  trips	  data	  of	  several	  
blackouts	  in	  the	  US,	  and	  found	  that,	  the	  branching	  process	  model	  can	  provide	  a	  
good	  fit	  for	  the	  cumulaHve	  number	  of	  line	  trips.	  Branching	  processes	  are	  useful	  to	  
model	  populaHon	  growth:	  each	  individual	  in	  one	  generaHon	  produces	  some	  
random	  number	  of	  individuals	  in	  the	  next	  generaHon.	  	  

•  Other	  works	  
–  Hines,	  et.al.	  :	  proposed	  that	  power	  grids	  may	  exhibit	  the	  cri.cal	  slowing	  down	  

phenomenon,	  which	  can	  be	  detected	  as	  a	  noHceable	  increase	  in	  the	  correlaHon	  of	  
some	  phase	  angle	  or	  system	  frequency,	  that	  is	  a	  suitable	  risk	  indicator	  for	  the	  
advent	  of	  a	  cascading	  blackouts.	  	  	  

•  Common	  LimitaHon:	  the	  models	  only	  describe	  the	  cascading	  process	  in	  state	  stages.	  
•  Need	  a	  Hme	  measure	  for	  grid	  vulnerability.	  
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What	  we	  propose	  
	  

	  	  A	  stochasHc	  Markovian	  model	  for	  cascading	  failures	  in	  power	  grid	  

–  Consider	  the	  limitaHons	  of	  other	  flow	  distribuHon	  models	  that	  are	  rooted	  
in	  Kirchhoff’s	  and	  Ohm’s	  laws	  and	  in	  the	  energy	  management	  model	  of	  
power	  dispatch	  

–  with	  line-‐state	  transiHon	  probabiliHes	  derived	  from	  a	  stochasHc	  model	  for	  
the	  flow	  redistribuHon,	  	  

–  which	  can	  potenHally	  capture	  the	  progression	  of	  cascading	  failures	  and	  its	  
Hme	  span.	  	  

–  Define	  metrics	  that	  can	  be	  monitored	  to	  unveil	  the	  risk	  of	  failure	  and	  the	  
Hme	  margin	  that	  is	  lej	  to	  perform	  correcHve	  acHon.	  	  
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The	  StochasHc	  Model	  for	  Cascading	  Process	  
Model	  the	  the	  grid	  states	  as	  condiHonally	  Markovian	  on	  the	  
evoluHon	  process	  of	  line	  flows	  
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The	  Power	  Grid	  Network	  Model	  

The	  power	  grid	  network:	  	  
DC	  flow	  model	  

The	  staHsHcs	  of	  
generaHon	  and	  loads	  

	  
We	  assume	  loads	  are	  
independent	  spaHally,	  

but	  have	  a	  given	  
autocorrelaHon	  
funcHon	  in	  Hme	  

	  

The	  staHsHcs	  of	  line	  flows	  

From	  which	  we	  can	  derive:	  
• using	  Rice’s	  result	  (1958),	  obtain	  
the	  probability	  distribuHon	  of	  	  
level-‐crossing	  intervals	  

• the	  staHsHcs	  of	  the	  crossing	  Hmes	  
give	  the	  staHsHcs	  of	  	  the	  line	  state	  
transiHon	  rate	  

• we	  can	  then	  obtain	  the	  average	  
lifeHme	  

• some	  useful	  metrics:	  overload	  
distances/probabiliHes,	  
vulnerability	  measures,	  etc.	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  

•  The	  overload	  probability	  
•  Useful	  distance	  metrics:	  	  

– Overload	  distance	  of	  one	  line	  	  al	  	  
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•  The	  level	  crossing	  intervals	  
–  mean:	  

	  	  	  	  	  with	  the	  equivalent	  bandwidth	  of	  the	  flow	  process:	  	  	  	  	  	  	  	  	  	  	  	  

–  PDF	  :	  	  	  

	  
•  The	  expected	  line	  states	  at	  the	  end	  of	  each	  interval	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ;	  
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•  The	  expected	  life	  Hme	  of	  a	  line	  

–  Expected	  number	  of	  crossings	  ajer	  which	  he	  line	  gets	  tripped	  

	  	  
–  	  	  
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Fig. 4: The quantities versus the normalized distance to the overload threshold
a: (a) the overloading probability ρ(a), the line non-trip probabilities α(a)
and β(a); (b) the average crossing rate γ(a); (c) the average interval length
τ̄u(a) and τ̄d(a); (d) the expected number of crossing before tripping κ̄(a);
(e) the average time before tripping in the last interval E{∆t}; (f) the safety
time T (a).

it is very clear that as a ! 1, T (a) approaches 1/λ0, while
as a " −1, T (a) approaches 1/λ∗.
Based on the above analysis one can clearly see that the

most critical lines in a network in the sense of a shortest
safety time can also be identified as the line with the smallest
overload distance al given current operating condition, That is

l∗ = arg min
l

Tl = arg min
l

al. (33)

The definition of al =
Fmax

l −µFl

σFl

tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow µFl

, and the corresponding variance σFl
.

IV. SIMULATION AND EXPERIMENT RESULTS
We experiment with the proposed stochastic model on the

IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as µP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.
Fig. 6 displays the normalized overload distance al, the

minimum safety time Tl, the overload margin (Fmax
l − µFl

)
and the flow variance σFl

of all the lines in the network after
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time T (a).

it is very clear that as a ! 1, T (a) approaches 1/λ0, while
as a " −1, T (a) approaches 1/λ∗.
Based on the above analysis one can clearly see that the

most critical lines in a network in the sense of a shortest
safety time can also be identified as the line with the smallest
overload distance al given current operating condition, That is

l∗ = arg min
l

Tl = arg min
l

al. (33)

The definition of al =
Fmax

l −µFl

σFl

tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow µFl

, and the corresponding variance σFl
.

IV. SIMULATION AND EXPERIMENT RESULTS
We experiment with the proposed stochastic model on the

IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as µP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.
Fig. 6 displays the normalized overload distance al, the

minimum safety time Tl, the overload margin (Fmax
l − µFl

)
and the flow variance σFl

of all the lines in the network after
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time T (a).

it is very clear that as a ! 1, T (a) approaches 1/λ0, while
as a " −1, T (a) approaches 1/λ∗.
Based on the above analysis one can clearly see that the

most critical lines in a network in the sense of a shortest
safety time can also be identified as the line with the smallest
overload distance al given current operating condition, That is

l∗ = arg min
l

Tl = arg min
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al. (33)

The definition of al =
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tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow µFl

, and the corresponding variance σFl
.

IV. SIMULATION AND EXPERIMENT RESULTS
We experiment with the proposed stochastic model on the

IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as µP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.
Fig. 6 displays the normalized overload distance al, the

minimum safety time Tl, the overload margin (Fmax
l − µFl

)
and the flow variance σFl

of all the lines in the network after
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it is very clear that as a ! 1, T (a) approaches 1/λ0, while
as a " −1, T (a) approaches 1/λ∗.
Based on the above analysis one can clearly see that the

most critical lines in a network in the sense of a shortest
safety time can also be identified as the line with the smallest
overload distance al given current operating condition, That is

l∗ = arg min
l

Tl = arg min
l

al. (33)

The definition of al =
Fmax

l −µFl
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tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow µFl

, and the corresponding variance σFl
.

IV. SIMULATION AND EXPERIMENT RESULTS
We experiment with the proposed stochastic model on the

IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as µP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.
Fig. 6 displays the normalized overload distance al, the

minimum safety time Tl, the overload margin (Fmax
l − µFl

)
and the flow variance σFl

of all the lines in the network after
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as a " −1, T (a) approaches 1/λ∗.
Based on the above analysis one can clearly see that the

most critical lines in a network in the sense of a shortest
safety time can also be identified as the line with the smallest
overload distance al given current operating condition, That is

l∗ = arg min
l

Tl = arg min
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al. (33)

The definition of al =
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tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow µFl

, and the corresponding variance σFl
.
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We experiment with the proposed stochastic model on the

IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as µP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.
Fig. 6 displays the normalized overload distance al, the

minimum safety time Tl, the overload margin (Fmax
l − µFl

)
and the flow variance σFl

of all the lines in the network after
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Extension	  to	  non-‐staHonary	  flow	  process	  
	  •  If	  the	  operaHon	  sekngs	  of	  the	  whole	  process	  is	  available,	  we	  can	  then	  

evaluate	  the	  safety	  Hme	  of	  a	  line	  based	  on	  the	  worst	  flow	  condiHon:	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  with	  

•  Assume	  a	  cyclo-‐staHonary	  process	  for	  the	  grid	  loads	  whose	  staHsHcal	  
properHes	  vary	  cyclically	  with	  Hme.	  	  
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Vulnerability	  metrics	  in	  terms	  of	  cascading	  failures	  
	  

•  The	  proposed	  model	  computes	  the	  expected	  life	  .me	  of	  a	  line	  	  	  	  	  	  	  	  	  	  	  	  ,	  
monotonically	  increasing	  with	  the	  line’s	  overload	  distance	  al	  	  

•  The	  most	  criHcal	  lines	  in	  a	  network	  in	  terms	  of	  the	  minimum	  safety	  .me	  can	  
also	  be	  idenHfied	  as	  the	  line	  with	  the	  smallest	  overload	  distance	  al	  	  

	  

(1)	  
network	  condiHon:	  

connecHng	  topology	  +	  
line	  impedances	  

(4)	  
staHsHcs	  of	  the	  line	  

flows	  derived	  from	  the	  
staHsHcs	  of	  injected	  

power	  

(2)	  
operaHng	  condiHon:	  	  
generaHon	  dispatch	  
and	  load	  sekngs	  

(3)	  
line	  capaciHes	  
(or	  overload	  
threshold)	  

the	  criterion	  of	  of	  high	  
traffic	  or	  high	  flow	  

increase	  ajer	  1	  trip	  based	  
on	  LODF	  (line	  outage	  
distribuHon	  factor)	  

Electrical	  betweenness	  

most	  graphic	  
vulnerability	  metrics	  	  only	  
considers	  parHally	  (1),	  

i.e.,	  the	  network	  topology	  
•  4	  affecHng	  factors:	  
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•  Experiment	  with	  the	  IEEE	  300	  	  
–  T	  =	  30	  mins,	  	  	  	  	  W	  =	  10-‐5	  Hz	  

	  
	  	  	  

•  The	  experiments	  with.	  	  
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•  The	  experiments	  with	  the	  IEEE	  300-‐bus	  system	  
have	  shown	  that:	  
Ø  the	   evoluHon	   process	   of	   cascading	   failures	  

with	   the	   cumulaHve	   line	   trips	   increasing	  
exponenHally	   versus	   Hme,	   and	   a	   paPern	  
compaHble	  with	  historical	   records	   from	  some	  
realisHc	  power	  grids.	  

Ø  The	   line	  flows	   in	  a	  power	  grid	  are	  correlated,	  
which	   means	   that	   power	   network	   flows	   are	  
less	   prone	   to	   generate	   cascading	   failures	  
compared	  to	  independent	  line	  flows.	  	  

Ø  The	  experiments	  also	  showcase	  how	  the	  (N	  −	  
1)	  conHngencies	  affect	  the	  system’s	  minimum	  
safety	   Hme,	   therefore	   one	   is	   able	   to	   idenHfy	  
the	   criHcal	   set	   of	   lines	   in	   the	   system	   whose	  
tripping	  might	  kindle	  cascading	  failures.	  	  
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NOTE:	  	  Accurate	  evaluaHon	  of	  failure	  risk	  in	  a	  power	  grid	  depends	  on	  the	  
correct	  informaHon	  about	  load	  and	  generaHon	  sekng	  and	  changes,	  the	  
line	  flow	  process,	  the	  overload	  status,	  ….	  ,	  which	  ask	  for	  accurate	  and	  
Hmely	  system	  awareness,	  i.e.,	  an	  efficient,	  fast,	  and	  resilient	  State	  
EsHmaHon	  funcHon.	  	  

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

line order Ŧ sorted by min
l
 (T

l
|
k
)

m
in

l (
T

l | k) 
a
ft
e
r 

1
 li

n
e
 t
ri
p
p
e
d
 (

h
rs

)

 

 

 all the lines

lines with largest F0

lines with largest eŦbetweenness
lines with largest 'F

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

line order Ŧ sorted by min
l
 (T

l
|
k
)

m
in

l (
T

l |
k) 

a
ft

e
r 

1
 li

n
e

 t
ri
p

p
e

d
 (

h
rs

)



tcipg.org | 20  TRUSTWORTHY CYBER INFRASTRUCTURE 
FOR THE POWER GRID 

	  
u The	  proposed	  stochasHc	  cascading	  model	  based	  on	  Markov	  transiHon:	  

–  takes	  into	  account	  the	  uncertainty	  in	  the	  load	  sekngs,	  the	  generaHon	  and	  line	  
flows;	  	  

–  correctly	  captures	  the	  stochasHc	  process	  of	  the	  evoluHon	  of	  cascading	  failures	  in	  a	  
power	  grid	  with	  regard	  to	  real	  Hme	  signal	  (i.e.,	  instead	  of	  stage	  numbers);	  	  

–  able	  to	  indicate	  which	  parts	  of	  the	  system	  are	  under	  most	  stresses	  therefore	  most	  
likely	  to	  break	  down	  in	  the	  next	  Hme	  interval.	  	  

–  useful	  to	  idenHfy	  and	  predict	  the	  criHcal	  paths	  of	  the	  possible	  cascading	  failures,	  
given	  some	  steady	  iniHal	  condiHon,	  with	  a	  probabilisHc	  model	  that	  allows	  to	  
explore	  selecHvely	  the	  future	  beyond	  single	  failures.	  	  

u  The	  introduced	  metrics	  	  can	  unveil	  the	  risk	  of	  failure	  and	  the	  Hme	  margin	  that	  
is	  lej	  to	  perform	  correcHve	  acHon.	  	  

u  The	  proposed	  model	  can	  be	  extended	  to	  include	  the	  dynamics	  of	  generaHons	  
and	  loads	  during	  the	  cascading	  process	  evoluHon	  and	  a	  full	  AC	  network	  model.	  

Conclusions	  
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Some	  Extra	  References:	  
	  

–  	  HICSS	  2012	  conference	  paper,	  “A	  Markov-‐TransiHon	  Model	  for	  Cascading	  
Failures	  in	  Power	  Grids	  ”	  (to	  appear).	  

–  Full	  paper	  “A	  StochasHc	  Approach	  to	  Studying	  Cascading	  Failures	  in	  Electric	  Power	  
Grids”,	  available	  on	  line:	  h<p://arxiv.org/submit/265679,	  2011.	  	  

–  We	  are	  going	  to	  put	  the	  sojware	  in	  the	  public	  domain.	  	  

–  We	  are	  focusing	  right	  now	  on	  state	  esHmaHon	  by	  network	  diffusion,	  and	  
want	  to	  use	  this	  Markovian	  model	  to	  provide	  a	  Bayesian	  method	  for	  Grid-‐
State	  esHmaHon.	  
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QuesHons?	  
	  

Thank	  You!	  


