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Problem	
  Statement	
  

•  What	
  problem	
  are	
  you	
  trying	
  to	
  solve?	
  
•  Why	
  does	
  it	
  maPer?	
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Enhanced	
  Monitoring	
  &	
  
Measuring	
  Architecture	
  

Enhanced	
  System	
  State	
  
Awareness	
  

Cascading	
  Failure	
  in	
  Power	
  Grids	
  is	
  a	
  
severe	
  security	
  threat.	
  However,	
  an	
  
accurate	
  model	
  and	
  metrics	
  to	
  
evaluate	
  the	
  risk	
  of	
  failure	
  and	
  the	
  
Hme	
  margin	
  to	
  perform	
  correcHve	
  
acHon	
  are	
  missing.	
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Background	
  

•  The	
  electric	
  power	
  grid	
  inter-­‐connecHvity	
  	
  
–  enables	
  long-­‐distance	
  transmission	
  of	
  power	
  for	
  more	
  efficient	
  system	
  operaHon.	
  	
  
–  also	
  allows	
  the	
  propagaHon	
  of	
  disturbances,	
  even	
  escalate	
  in	
  catastrophic	
  

blackouts.	
  	
  

•  Many	
  research	
  efforts	
  on	
  the	
  vulnerability	
  of	
  power	
  grids	
  
–  StaHc	
  failure	
  models	
  

•  focus	
  on	
  topology	
  vulnerability,	
  such	
  as	
  network	
  connecHvity	
  
•  do	
  not	
  describe	
  the	
  evolving	
  process	
  of	
  cascading	
  failures	
  
•  works	
  by	
  Rosas-­‐Casals,	
  Valverde	
  ,	
  etc.	
  	
  
•  some	
  use	
  realisHc	
  power	
  grid	
  networks;	
  some	
  use	
  inappropriate	
  network	
  
topologies.	
  

–  Dynamic	
  overload	
  failure	
  models	
  
•  3	
  components:	
  triggering	
  events,	
  flow	
  re-­‐dispatch,	
  addiHonal	
  line	
  trips	
  
•  Graphic	
  theory	
  approaches	
  (MoPer	
  :	
  graph	
  network)	
  
•  Models	
  based	
  on	
  realisHc	
  power	
  flows	
  (Dobson:	
  linear	
  OPF)	
  
•  StochasHc	
  models	
  (Dobson:	
  branching	
  process,	
  Hines:	
  criHcal	
  slowing	
  down)	
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On	
  the	
  Graphic	
  Approaches	
  

•  CriHque	
  of	
  Graph	
  TheoreHc	
  Models	
  
–  more	
  suitable	
  for	
  communicaHon	
  or	
  traffic	
  networks	
  	
  
–  	
  the	
  informaHon	
  packets	
  and	
  vehicles	
  can	
  freely	
  switch	
  their	
  route	
  
–  the	
  flows	
  preferenHally	
  choose	
  shorter	
  paths	
  
–  The	
  nodes	
  in	
  a	
  network	
  can	
  easily	
  switch	
  its	
  role	
  as	
  a	
  sender	
  or	
  receiver	
  

•  The	
  flows	
  in	
  a	
  power	
  grid	
  network	
  
–  dominated	
  by	
  Kirchhoff’s	
  Voltage/Current	
  laws	
  and	
  Ohm’s	
  law	
  

–  the	
  conservaHon	
  of	
  flows	
  in	
  a	
  graph	
  =>	
  equivalent	
  to	
  KCL	
  	
  
–  	
  KVL	
  and	
  Ohm’s	
  law	
  are	
  unique	
  for	
  power	
  gird	
  flows	
  
–  the	
  nodes	
  in	
  a	
  grid	
  divided	
  into	
  3	
  classes:	
  generaHon/load/interconnecHon,	
  

switching	
  roles	
  are	
  rare.	
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Visualized	
  Examples	
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(c) flow redistribution after line trips
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Fig. 1: Flow Redistribution in a Torus Grid Network

is more an accident than a result of a law if they tend to carry
a larger share of load flow in the network. This is attested by
the experiments we perform to study the flow redistribution on
the IEEE-57 System,whose rewiring structure can be depicted
by a Kirk’s plot as in Fig. 2. The color intensity shows the
original flow distribution in the network in Fig. 2(a). Fig.
2(b) shows how the flow distribution changes when the line
impedance of line 1-15 is increased by a factor of 10. Note
the line impedance change does not alter the node degrees or
line betweenness in the network. However, some large flow
changes can be observed on a number of lines. This verifies
that the line impedances, besides the network topology, also
play an important role in determining the flow distribution. The
flow magnitude changes after tripping a rewire link (line 22-
38) have been displayed in 2(d). The flow magnitude changes
after tripping a local link (line 5-6) are exemplified in Fig.
2(c). It can be seen that tripping a rewire link may result in
large flow redistributions on other rewire links and some links
in the connected clusters. On the other hand, tripping a local
cluster link usually may not cause large flow redistribution
outside the local cluster. Again some lines experience an
increase and others a decrease in flow. But neither the original
flow dispatch in a power grid, nor the flow re-distribution
after contingencies, concentrate on shortest paths between
generators and loads. They are not proportional to the node
degree or betweenness. More detailed discussions on power
grid flow distribution will been presented in Section IV.

III. CRITIQUE OF OPTIMAL POWER DISPATCH MODELS

While this class of models is consistent with the physical
reality of electrical power grids flows, the optimization power
flow model, as shown in [12], may not be an appropriate
approach to simulate the flow re-distribution process during
the cascading failures. Although the cascading process in a
power grid starts from isolated random contingencies, the root
reason for the spreading of failures may lie in some intrinsic
weakness of the network or some hidden failures, which go un-
detected and therefore do not lead to timely corrective action.

(a) the original flow distribution (b) increasing the impedance of line
1-15 (rewire link)

(c) tripping line 5-6 (local link) (d) tripping line 22-38 (rewire link)

Fig. 2: Flow Redistribution in the IEEE-57 System

During the escalation of cascading failures, hundreds of lines
are switched off in less than an hour period, and usually there
is not enough time for planning any optimized generation re-
dispatch or load-shedding. Only local transient controls are
engaged, like the Generation Governor Control (GGC). Also,
including the OPF in the simulation model is somewhat self-
contradictory: on one hand, it makes a necessary adjustment
in generation and performs load shedding in order to avoid
line overloads after line outages; on the other , the job is
left somewhat unfinished, since the OPF used depresses only
partially the flows below the line capacity limits and leaves
some chance for additional overloads and line trips, so as to
model the following stages. Another common drawback in
the prior art is the inability to capture the evolution process of
cascading failures with regard to time since they only describe
the cascading process in network state stages.

Therefore in this paper we propose a stochastic Markov
model for the transition of the power grid state, which in-
corporates uncertainties in the system load settings and in the
corresponding generation and line flows. The flow distribution
is derived from the network equations, as a function of the
generation and load distribution (i.e. the operating point). This
model identifies critical paths followed by cascading failures,
allowing to explore the future beyond single failures.

IV. SYSTEM MODEL AND FLOW DISTRIBUTION

The DC power flow approximation is a standard approach
widely used in optimizing flow dispatch and for assessing
line overloads (see [19] for more details). Consider a power
grid transmission network with n nodes interconnected by m

transmission lines, the network flow equation can be written
as follows:

P = B

0
✓, (1)

3

(a) the flattened grid (b) the original flow distribution

(c) flow redistribution after line trips (d) changes in the flow magnitude

Fig. 1: Flow Redistribution in a Torus Grid Network

is more an accident than a result of a law if they tend to carry
a larger share of load flow in the network. This is attested by
the experiments we perform to study the flow redistribution on
the IEEE-57 System,whose rewiring structure can be depicted
by a Kirk’s plot as in Fig. 2. The color intensity shows the
original flow distribution in the network in Fig. 2(a). Fig.
2(b) shows how the flow distribution changes when the line
impedance of line 1-15 is increased by a factor of 10. Note
the line impedance change does not alter the node degrees or
line betweenness in the network. However, some large flow
changes can be observed on a number of lines. This verifies
that the line impedances, besides the network topology, also
play an important role in determining the flow distribution. The
flow magnitude changes after tripping a rewire link (line 22-
38) have been displayed in 2(d). The flow magnitude changes
after tripping a local link (line 5-6) are exemplified in Fig.
2(c). It can be seen that tripping a rewire link may result in
large flow redistributions on other rewire links and some links
in the connected clusters. On the other hand, tripping a local
cluster link usually may not cause large flow redistribution
outside the local cluster. Again some lines experience an
increase and others a decrease in flow. But neither the original
flow dispatch in a power grid, nor the flow re-distribution
after contingencies, concentrate on shortest paths between
generators and loads. They are not proportional to the node
degree or betweenness. More detailed discussions on power
grid flow distribution will been presented in Section IV.

III. CRITIQUE OF OPTIMAL POWER DISPATCH MODELS

While this class of models is consistent with the physical
reality of electrical power grids flows, the optimization power
flow model, as shown in [12], may not be an appropriate
approach to simulate the flow re-distribution process during
the cascading failures. Although the cascading process in a
power grid starts from isolated random contingencies, the root
reason for the spreading of failures may lie in some intrinsic
weakness of the network or some hidden failures, which go un-
detected and therefore do not lead to timely corrective action.

Ft – resulting flows: small hole case• Trip line 1-15 which carries the largest flow in the network.

• Causes large flow increases in the nearby rewire links and some local links. max F_incr = 0.9 p.u
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(a) the original flow distribution
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(b) increasing the impedance of line
1-15 (rewire link)

Ft – resulting flows: small hole case• Trip line 5-6 which is a local link and carries small-amount flow in the network.

• Only causes small flow increases less than .01.
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(c) tripping line 5-6 (local link)
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(d) tripping line 22-38 (rewire link)

Fig. 2: Flow Redistribution in the IEEE-57 System

During the escalation of cascading failures, hundreds of lines
are switched off in less than an hour period, and usually there
is not enough time for planning any optimized generation re-
dispatch or load-shedding. Only local transient controls are
engaged, like the Generation Governor Control (GGC). Also,
including the OPF in the simulation model is somewhat self-
contradictory: on one hand, it makes a necessary adjustment
in generation and performs load shedding in order to avoid
line overloads after line outages; on the other , the job is
left somewhat unfinished, since the OPF used depresses only
partially the flows below the line capacity limits and leaves
some chance for additional overloads and line trips, so as to
model the following stages. Another common drawback in
the prior art is the inability to capture the evolution process of
cascading failures with regard to time since they only describe
the cascading process in network state stages.

Therefore in this paper we propose a stochastic Markov
model for the transition of the power grid state, which in-
corporates uncertainties in the system load settings and in the
corresponding generation and line flows. The flow distribution
is derived from the network equations, as a function of the
generation and load distribution (i.e. the operating point). This
model identifies critical paths followed by cascading failures,
allowing to explore the future beyond single failures.

IV. SYSTEM MODEL AND FLOW DISTRIBUTION

The DC power flow approximation is a standard approach
widely used in optimizing flow dispatch and for assessing
line overloads (see [19] for more details). Consider a power
grid transmission network with n nodes interconnected by m

transmission lines, the network flow equation can be written
as follows:

P = B

0
✓, (1)
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The	
  LOPF-­‐models	
  
•  The	
  models	
  based	
  on	
  Linear	
  OpHmizaHon:	
  	
  

–  DC	
  power	
  flow	
  –	
  consistent	
  with	
  power	
  grid	
  network.	
  	
  
–  determined	
  opHmizaHon	
  (LOPF)	
  –	
  inappropriate	
  model	
  for	
  flow	
  re-­‐distribuHon	
  

ajer	
  failures	
  
•  the	
  escalaHon	
  of	
  cascading	
  failures:	
  hundreds	
  of	
  lines	
  tripped	
  in	
  a	
  short	
  period	
  
•  there	
  is	
  usually	
  not	
  enough	
  Hme	
  for	
  planning	
  any	
  opHmized	
  generaHon	
  re-­‐	
  
dispatch	
  or	
  load-­‐shedding	
  

•  self-­‐	
  contradictory	
  sekngs	
  in	
  the	
  model:	
  	
  	
  

 	
  
assuming	
  necessary	
  
adjustment	
  in	
  generaHon	
  
and/or	
  load	
  shedding	
  in	
  
order	
  to	
  avoid	
  line	
  
overloads	
  ajer	
  line	
  
outages	
  

the	
  task	
  in	
  fact	
  is	
  only	
  
parHally	
  finished:	
  the	
  line	
  
flows	
  depressed	
  slightly	
  
below	
  the	
  overload	
  threshold	
  
and	
  some	
  chances	
  lej	
  for	
  
addiHonal	
  overloads	
  and	
  line	
  
trips,	
  so	
  as	
  to	
  model	
  the	
  
following	
  stages.	
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Branching	
  Process,	
  etc.	
  
•  A	
  few	
  authors	
  have	
  considered	
  stochasHc	
  modeling.	
  	
  

–  Dobson,	
  Carreras	
  and	
  Newman	
  (2005)	
  [16]	
  analyzed	
  the	
  line	
  trips	
  data	
  of	
  several	
  
blackouts	
  in	
  the	
  US,	
  and	
  found	
  that,	
  the	
  branching	
  process	
  model	
  can	
  provide	
  a	
  
good	
  fit	
  for	
  the	
  cumulaHve	
  number	
  of	
  line	
  trips.	
  Branching	
  processes	
  are	
  useful	
  to	
  
model	
  populaHon	
  growth:	
  each	
  individual	
  in	
  one	
  generaHon	
  produces	
  some	
  
random	
  number	
  of	
  individuals	
  in	
  the	
  next	
  generaHon.	
  	
  

•  Other	
  works	
  
–  Hines,	
  et.al.	
  :	
  proposed	
  that	
  power	
  grids	
  may	
  exhibit	
  the	
  cri.cal	
  slowing	
  down	
  

phenomenon,	
  which	
  can	
  be	
  detected	
  as	
  a	
  noHceable	
  increase	
  in	
  the	
  correlaHon	
  of	
  
some	
  phase	
  angle	
  or	
  system	
  frequency,	
  that	
  is	
  a	
  suitable	
  risk	
  indicator	
  for	
  the	
  
advent	
  of	
  a	
  cascading	
  blackouts.	
  	
  	
  

•  Common	
  LimitaHon:	
  the	
  models	
  only	
  describe	
  the	
  cascading	
  process	
  in	
  state	
  stages.	
  
•  Need	
  a	
  Hme	
  measure	
  for	
  grid	
  vulnerability.	
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What	
  we	
  propose	
  
	
  

	
  	
  A	
  stochasHc	
  Markovian	
  model	
  for	
  cascading	
  failures	
  in	
  power	
  grid	
  

–  Consider	
  the	
  limitaHons	
  of	
  other	
  flow	
  distribuHon	
  models	
  that	
  are	
  rooted	
  
in	
  Kirchhoff’s	
  and	
  Ohm’s	
  laws	
  and	
  in	
  the	
  energy	
  management	
  model	
  of	
  
power	
  dispatch	
  

–  with	
  line-­‐state	
  transiHon	
  probabiliHes	
  derived	
  from	
  a	
  stochasHc	
  model	
  for	
  
the	
  flow	
  redistribuHon,	
  	
  

–  which	
  can	
  potenHally	
  capture	
  the	
  progression	
  of	
  cascading	
  failures	
  and	
  its	
  
Hme	
  span.	
  	
  

–  Define	
  metrics	
  that	
  can	
  be	
  monitored	
  to	
  unveil	
  the	
  risk	
  of	
  failure	
  and	
  the	
  
Hme	
  margin	
  that	
  is	
  lej	
  to	
  perform	
  correcHve	
  acHon.	
  	
  

	
  



tcipg.org | 10  TRUSTWORTHY CYBER INFRASTRUCTURE 
FOR THE POWER GRID 

The	
  StochasHc	
  Model	
  for	
  Cascading	
  Process	
  
Model	
  the	
  the	
  grid	
  states	
  as	
  condiHonally	
  Markovian	
  on	
  the	
  
evoluHon	
  process	
  of	
  line	
  flows	
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The	
  Power	
  Grid	
  Network	
  Model	
  

The	
  power	
  grid	
  network:	
  	
  
DC	
  flow	
  model	
  

The	
  staHsHcs	
  of	
  
generaHon	
  and	
  loads	
  

	
  
We	
  assume	
  loads	
  are	
  
independent	
  spaHally,	
  

but	
  have	
  a	
  given	
  
autocorrelaHon	
  
funcHon	
  in	
  Hme	
  

	
  

The	
  staHsHcs	
  of	
  line	
  flows	
  

From	
  which	
  we	
  can	
  derive:	
  
• using	
  Rice’s	
  result	
  (1958),	
  obtain	
  
the	
  probability	
  distribuHon	
  of	
  	
  
level-­‐crossing	
  intervals	
  

• the	
  staHsHcs	
  of	
  the	
  crossing	
  Hmes	
  
give	
  the	
  staHsHcs	
  of	
  	
  the	
  line	
  state	
  
transiHon	
  rate	
  

• we	
  can	
  then	
  obtain	
  the	
  average	
  
lifeHme	
  

• some	
  useful	
  metrics:	
  overload	
  
distances/probabiliHes,	
  
vulnerability	
  measures,	
  etc.	
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•  The	
  overload	
  probability	
  
•  Useful	
  distance	
  metrics:	
  	
  

– Overload	
  distance	
  of	
  one	
  line	
  	
  al	
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  overall	
  overload	
  distance	
  of	
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  system	
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  Mahalanobis	
  overload	
  distance	
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  Euclidean	
  overload	
  distance	
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•  The	
  level	
  crossing	
  intervals	
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  the	
  equivalent	
  bandwidth	
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  the	
  flow	
  process:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

–  PDF	
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  interval	
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•  The	
  expected	
  life	
  Hme	
  of	
  a	
  line	
  

–  Expected	
  number	
  of	
  crossings	
  ajer	
  which	
  he	
  line	
  gets	
  tripped	
  

	
  	
  
–  	
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Fig. 4: The quantities versus the normalized distance to the overload threshold
a: (a) the overloading probability ρ(a), the line non-trip probabilities α(a)
and β(a); (b) the average crossing rate γ(a); (c) the average interval length
τ̄u(a) and τ̄d(a); (d) the expected number of crossing before tripping κ̄(a);
(e) the average time before tripping in the last interval E{∆t}; (f) the safety
time T (a).

it is very clear that as a ! 1, T (a) approaches 1/λ0, while
as a " −1, T (a) approaches 1/λ∗.
Based on the above analysis one can clearly see that the

most critical lines in a network in the sense of a shortest
safety time can also be identified as the line with the smallest
overload distance al given current operating condition, That is

l∗ = arg min
l

Tl = arg min
l

al. (33)

The definition of al =
Fmax

l −µFl

σFl

tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow µFl

, and the corresponding variance σFl
.

IV. SIMULATION AND EXPERIMENT RESULTS
We experiment with the proposed stochastic model on the

IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as µP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.
Fig. 6 displays the normalized overload distance al, the

minimum safety time Tl, the overload margin (Fmax
l − µFl

)
and the flow variance σFl

of all the lines in the network after
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, and the corresponding variance σFl
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has a topology with 300 nodes and 411 links. The initial
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independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
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all the simulation parameters in our experiments. The random
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by design extremely small, except under some very special
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to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
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l∗ = arg min
l

Tl = arg min
l

al. (33)

The definition of al =
Fmax

l −µFl

σFl

tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow µFl

, and the corresponding variance σFl
.

IV. SIMULATION AND EXPERIMENT RESULTS
We experiment with the proposed stochastic model on the

IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as µP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.
Fig. 6 displays the normalized overload distance al, the

minimum safety time Tl, the overload margin (Fmax
l − µFl

)
and the flow variance σFl

of all the lines in the network after
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Extension	
  to	
  non-­‐staHonary	
  flow	
  process	
  
	
  •  If	
  the	
  operaHon	
  sekngs	
  of	
  the	
  whole	
  process	
  is	
  available,	
  we	
  can	
  then	
  

evaluate	
  the	
  safety	
  Hme	
  of	
  a	
  line	
  based	
  on	
  the	
  worst	
  flow	
  condiHon:	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  with	
  

•  Assume	
  a	
  cyclo-­‐staHonary	
  process	
  for	
  the	
  grid	
  loads	
  whose	
  staHsHcal	
  
properHes	
  vary	
  cyclically	
  with	
  Hme.	
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Vulnerability	
  metrics	
  in	
  terms	
  of	
  cascading	
  failures	
  
	
  

•  The	
  proposed	
  model	
  computes	
  the	
  expected	
  life	
  .me	
  of	
  a	
  line	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
monotonically	
  increasing	
  with	
  the	
  line’s	
  overload	
  distance	
  al	
  	
  

•  The	
  most	
  criHcal	
  lines	
  in	
  a	
  network	
  in	
  terms	
  of	
  the	
  minimum	
  safety	
  .me	
  can	
  
also	
  be	
  idenHfied	
  as	
  the	
  line	
  with	
  the	
  smallest	
  overload	
  distance	
  al	
  	
  

	
  

(1)	
  
network	
  condiHon:	
  

connecHng	
  topology	
  +	
  
line	
  impedances	
  

(4)	
  
staHsHcs	
  of	
  the	
  line	
  

flows	
  derived	
  from	
  the	
  
staHsHcs	
  of	
  injected	
  

power	
  

(2)	
  
operaHng	
  condiHon:	
  	
  
generaHon	
  dispatch	
  
and	
  load	
  sekngs	
  

(3)	
  
line	
  capaciHes	
  
(or	
  overload	
  
threshold)	
  

the	
  criterion	
  of	
  of	
  high	
  
traffic	
  or	
  high	
  flow	
  

increase	
  ajer	
  1	
  trip	
  based	
  
on	
  LODF	
  (line	
  outage	
  
distribuHon	
  factor)	
  

Electrical	
  betweenness	
  

most	
  graphic	
  
vulnerability	
  metrics	
  	
  only	
  
considers	
  parHally	
  (1),	
  

i.e.,	
  the	
  network	
  topology	
  
•  4	
  affecHng	
  factors:	
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•  Experiment	
  with	
  the	
  IEEE	
  300	
  	
  
–  T	
  =	
  30	
  mins,	
  	
  	
  	
  	
  W	
  =	
  10-­‐5	
  Hz	
  

	
  
	
  	
  	
  

•  The	
  experiments	
  with.	
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•  The	
  experiments	
  with	
  the	
  IEEE	
  300-­‐bus	
  system	
  
have	
  shown	
  that:	
  
Ø  the	
   evoluHon	
   process	
   of	
   cascading	
   failures	
  

with	
   the	
   cumulaHve	
   line	
   trips	
   increasing	
  
exponenHally	
   versus	
   Hme,	
   and	
   a	
   paPern	
  
compaHble	
  with	
  historical	
   records	
   from	
  some	
  
realisHc	
  power	
  grids.	
  

Ø  The	
   line	
  flows	
   in	
  a	
  power	
  grid	
  are	
  correlated,	
  
which	
   means	
   that	
   power	
   network	
   flows	
   are	
  
less	
   prone	
   to	
   generate	
   cascading	
   failures	
  
compared	
  to	
  independent	
  line	
  flows.	
  	
  

Ø  The	
  experiments	
  also	
  showcase	
  how	
  the	
  (N	
  −	
  
1)	
  conHngencies	
  affect	
  the	
  system’s	
  minimum	
  
safety	
   Hme,	
   therefore	
   one	
   is	
   able	
   to	
   idenHfy	
  
the	
   criHcal	
   set	
   of	
   lines	
   in	
   the	
   system	
   whose	
  
tripping	
  might	
  kindle	
  cascading	
  failures.	
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NOTE:	
  	
  Accurate	
  evaluaHon	
  of	
  failure	
  risk	
  in	
  a	
  power	
  grid	
  depends	
  on	
  the	
  
correct	
  informaHon	
  about	
  load	
  and	
  generaHon	
  sekng	
  and	
  changes,	
  the	
  
line	
  flow	
  process,	
  the	
  overload	
  status,	
  ….	
  ,	
  which	
  ask	
  for	
  accurate	
  and	
  
Hmely	
  system	
  awareness,	
  i.e.,	
  an	
  efficient,	
  fast,	
  and	
  resilient	
  State	
  
EsHmaHon	
  funcHon.	
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u The	
  proposed	
  stochasHc	
  cascading	
  model	
  based	
  on	
  Markov	
  transiHon:	
  

–  takes	
  into	
  account	
  the	
  uncertainty	
  in	
  the	
  load	
  sekngs,	
  the	
  generaHon	
  and	
  line	
  
flows;	
  	
  

–  correctly	
  captures	
  the	
  stochasHc	
  process	
  of	
  the	
  evoluHon	
  of	
  cascading	
  failures	
  in	
  a	
  
power	
  grid	
  with	
  regard	
  to	
  real	
  Hme	
  signal	
  (i.e.,	
  instead	
  of	
  stage	
  numbers);	
  	
  

–  able	
  to	
  indicate	
  which	
  parts	
  of	
  the	
  system	
  are	
  under	
  most	
  stresses	
  therefore	
  most	
  
likely	
  to	
  break	
  down	
  in	
  the	
  next	
  Hme	
  interval.	
  	
  

–  useful	
  to	
  idenHfy	
  and	
  predict	
  the	
  criHcal	
  paths	
  of	
  the	
  possible	
  cascading	
  failures,	
  
given	
  some	
  steady	
  iniHal	
  condiHon,	
  with	
  a	
  probabilisHc	
  model	
  that	
  allows	
  to	
  
explore	
  selecHvely	
  the	
  future	
  beyond	
  single	
  failures.	
  	
  

u  The	
  introduced	
  metrics	
  	
  can	
  unveil	
  the	
  risk	
  of	
  failure	
  and	
  the	
  Hme	
  margin	
  that	
  
is	
  lej	
  to	
  perform	
  correcHve	
  acHon.	
  	
  

u  The	
  proposed	
  model	
  can	
  be	
  extended	
  to	
  include	
  the	
  dynamics	
  of	
  generaHons	
  
and	
  loads	
  during	
  the	
  cascading	
  process	
  evoluHon	
  and	
  a	
  full	
  AC	
  network	
  model.	
  

Conclusions	
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Some	
  Extra	
  References:	
  
	
  

–  	
  HICSS	
  2012	
  conference	
  paper,	
  “A	
  Markov-­‐TransiHon	
  Model	
  for	
  Cascading	
  
Failures	
  in	
  Power	
  Grids	
  ”	
  (to	
  appear).	
  

–  Full	
  paper	
  “A	
  StochasHc	
  Approach	
  to	
  Studying	
  Cascading	
  Failures	
  in	
  Electric	
  Power	
  
Grids”,	
  available	
  on	
  line:	
  h<p://arxiv.org/submit/265679,	
  2011.	
  	
  

–  We	
  are	
  going	
  to	
  put	
  the	
  sojware	
  in	
  the	
  public	
  domain.	
  	
  

–  We	
  are	
  focusing	
  right	
  now	
  on	
  state	
  esHmaHon	
  by	
  network	
  diffusion,	
  and	
  
want	
  to	
  use	
  this	
  Markovian	
  model	
  to	
  provide	
  a	
  Bayesian	
  method	
  for	
  Grid-­‐
State	
  esHmaHon.	
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QuesHons?	
  
	
  

Thank	
  You!	
  


